
Learning Galaxy Evolution via Diffusion Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

In astrophysics, understanding the evolution of galaxies in large part through1

imaging data is fundamental to comprehending the formation of the Universe. This2

paper introduces a new approach to conditioning Denoising Diffusion Probabilistic3

Models (DDPM) on redshifts for generating galaxy images. We explore whether4

this advanced generative model can capture the physical characteristics of galaxies5

based solely on their images and redshift measurements. Our findings demonstrate6

that this model not only produces visually realistic galaxy images but also encodes7

the underlying changes in physical properties with redshift that are the result of8

galaxy evolution. This approach marks a significant step in using generative models9

to enhance our scientific insight into cosmic phenomena.10

1 Introduction11

Understanding galaxy formation and evolution is central to astrophysics, but observational limitations12

restrict our ability to capture galaxies across cosmic time. Redshift-conditioned generative models13

help fill these gaps by simulating galaxies in underexplored regions, offering new insights into14

galaxy evolution and cosmic structure. Recently, Denoising Diffusion Probabilistic Models (DDPM)15

models [1] have emerged as a promising generative model class, achieving state-of-the-art results in16

generating high-fidelity images [1, 2, 3].17

DDPMs operate by gradually adding noise to data through a forward diffusion process and then18

learning to reverse this process to generate new samples. Their ability to model complex distributions19

makes them suitable candidates for generating galaxy images conditioned on specific properties, such20

as redshift, which corresponds approximately to the distance of a galaxy.21

2 Related Work22

Recent efforts [4, 5] have applied diffusion models in astronomy by discretizing continuous redshift23

values to adapt to the discrete-time framework of these models. This discretization process inherently24

leads to information loss, which in turn limits the model’s ability to accurately learn the continuous25

distribution p(Xz | z) thereby impacting the precision of the generated galaxy images conditioned26

on redshift. Similar approaches, such as those by Xue et al. [6], have explored the use of DDPMs27

for Point Spread Function (PSF) deconvolution, but their method, distinct from ours, does not28

address the limitations of discrete stepwise conditioning. Lanusse et al. [7] and Margalef et al. [8]29

utilized Generative Adversarial Networks (GANs) with redshift as a conditional input to generate30

synthetic galaxy images, simulating the visual characteristics of galaxies across different distances31

and observational scenarios. However these GANs struggle with mode collapse and benchmarks32

were compared with perceptual scores as opposed to true galaxy morphology.33
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3 Contributions34

To overcome these limitations, we propose a novel adaptation of DDPMs, specifically tailored for35

generating galaxy images across a continuous range of redshifts without the need for discretization or36

the introduction of a secondary redshift encoding model. Our main contributions are as follows:37

• We develop a new approach that directly conditions the DDPM on continuous redshift38

values, enhancing the model’s accuracy and fidelity.39

• Our findings demonstrate that our model can implicitly learn the morphological character-40

istics of galaxies without explicit input regarding these attributes, thereby suggesting that41

redshift alone is predictive of galaxy morphology.42

4 Data43

For our analysis, we employ a subset of the Hyper Suprime-Cam Galaxy Dataset curated by Do44

et al. [9], which is publicly accessible at Zendo (GalaxiesML: https://zenodo.org/records/45

11117528 CC-BY 4.0). This dataset is based on the data released by the Hyper Suprime-Cam survey,46

as detailed by Aihara et al. [10]. It comprises 286,401 galaxies, spanning redshifts from 0 to 4.47

Each galaxy is represented by images taken in five visible wavelength bands—(g, r, i, z, y) filters.48

We use the 64 × 64 pixel images from GalaxiesML. The dataset includes accurate spectroscopic49

measurements of each galaxy’s true redshift (or distance from Earth). Due to the selection process,50

the dataset exhibits a bias toward lower redshifts, with approximately 92.8% of the galaxies having51

redshifts less than 1.5. We adhere to the training and testing split proposed by Li et al. [4], resulting52

in a training set comprising 204,513 images and a testing set containing 40,914 images.53

5 Methods54

5.1 Continuous Conditioning of DDPM55

Utilizing DDPMs [1], we introduce a novel approach to learn the conditional distribution p(Xz | z)56

by integrating redshift values into the U-Net architecture’s time steps [4, 5]. To prevent model57

overfitting and ensure learning is concentrated within a Gaussian neighborhood around specific58

redshifts z, Gaussian noise N (0, σ) is added during to the redshifts during training, enhancing59

the model’s ability to interpolate between nearby redshifts. Our Conditional Denoising U-Net60

starts with a noisy initial galaxy image Xz
T and, through iterative denoising informed by both61

time step and the adjusted redshifts, aims to produce a clean galaxy image Xz
0 . To addition-62

ally stabilize the training, we implement an Exponential Moving Average (EMA) [11] and ad-63

here to a standard variance schedule [1, 12] to balance noise addition and preserve data structure.64

Input Galaxy Xz
T

Conditional Denoising UNet

Output Image Xz
0

Redshift z +N (0, σ)

Positional Encoding tEMA Update

Diffusion Process

Figure 1: Model Architecture

65

The model’s diffusion process starts with 64 × 64 pixel66

galaxies images with 5 channels, which are passed to a67

noising schedule across 1000 time steps, linearly inter-68

polating noise levels from a Beta Start of 1 × 10−4 to a69

Beta End of 0.02. Training utilizes Huber Loss for its70

robustness to outliers, gradient clipping with a max norm71

of 1.0, and an AdamW optimizer set to a learning rate of72

2 × 10−5. Redshifts are perturbed with Gaussian noise73

(std dev 0.01) to prevent overfitting and improve gener-74

alization. Our UNet model, equipped with self-attention75

layers, varies channels by resolution stage and includes 476

attention heads with layer normalization and GELU acti-77

vation, applied before and after attention. Temporal and78

conditional redshift information is encoded using sinusoidal positional encoding of the time step t,79

transformed into a 256-dimensional vector. This vector is further modified by adding Gaussian noise80

to the redshift value z +N (0, 0.01), prior to being fed into the U-Net (refer to 5.1). The model was81

trained on a single NVIDIA A6000 GPU. Exact architecture details and implementations are to be82

released in a publicly available open sourced github.83
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Figure 2: From left to right, the figure displays: 1) a scatter plot comparing predicted redshifts to
true redshifts for ground truth images, 2) a similar scatter plot for DDPM-generated images, 3) a plot
of true redshift versus mean redshift loss, highlighting the performance accuracy across the redshift
range.

Figure 3: From left to right, the figure displays histograms comparing the frequency distribution of
DDPM-generated and real galaxies in terms of 1) ellipticity, 2) semi-major axis, 3) Sersic index, and
4 isophotal area).

5.2 Evaluation84

Our evaluation focuses on the measured physical attributes of galaxies to gauge the physical con-85

sistency of our generated images, which involve five color filters (g, r, i, z, y). While perceptual86

quality metrics like Fréchet Inception Distance (FID) [13] and Inception Score (IS) [14] indicate87

general similarity to true images, they fail to assess critical morphological properties of galaxies88

and their evolution over time. Our evaluation involves generating synthetic images conditioned on89

redshifts from the test dataset and comparing to physical properites that astronomers typically use90

to characterize galaxies, such as the shape (ellipticity, semi-major axis), size (isophotal area), and91

brightness distribution (Sersic index). Furthermore, using the CNNRedshift predictor established92

by Li et al. [4], we assess the redshift accuracy against the ground truth, utilizing the redshift loss93

from [15]. This redshift predictor was trained on real galaxy images using spectroscopic ground truth94

and produces good predictions on real data (Fig. 2). These comparisons help verify the physical95

plausibility of the diffusion model’s output.96

6 Results97

6.1 Redshift Prediction98

We find that the generated images have redshift predictions that are in good agreement with the99

redshift that they were generated with as evaluated by the CNNRedshift predictor (Fig. 2). The100

DDPM produces images with redshift predictions that have slightly larger scatter than with real101

images, but follows the 1:1 line between conditioned redshift and predicted redshift well up to a102

redshift about 2. Redshifts beyond 2 are challenge because these redshifts represent less than 2% of103

the training dataset.104

6.2 Galaxy Morphology105

We calculate standard metrics on both the test data and the DDPM-generated images conditioned106

on the test data’s redshifts. Our findings confirm that the DDPM successfully learns the physical107
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Figure 4: From left to right, the figure displays 95% CIs comparing DDPM-generated and real
galaxies across redshift bins: 1) ellipticity, 2) semi-major axis, 3) Sersic index, and 4 isophotal area)

Figure 5: (Top) Real galaxies and corresponding redshifts and (Bottom) DDPM generated galaxies.
Both rows correspond to respective redshifts 0.10 to 0.90 and the final image at redshift 2.00.

characteristics of galaxies-such as the ellipticity, semi-major axis, Sersic index, and isophotal area108

even though these attributes were never explicitly provided to the model. When comparing the109

frequencies of each metric between the DDPM and the true distribution, we see in Fig. 3 that the110

overall shape of the distributions is very close.111

Moreso, Fig. 4 illustrates that for each redshift bin, the mean values (represented by red dots) of each112

metric for DDPM-generated galaxies closely match the means of the true test distribution (blue dots).113

The ranges of these metrics generally fall within the true distribution’s ranges. This suggests that the114

DDPM model is able to associate redshifts with morphological characteristics of galaxies observed at115

that redshift.116

Recall that Fig. 2 indicates a greater variance in detected redshifts. We anticipate the model to117

produce a broader range of generated images, potentially blending characteristics from neighboring118

redshift values. This effect is evident in Fig. 5, where the model generates images that display119

increased diversity and variability.120

6.3 Limitations121

While our model successfully captures key physical properties of galaxies, it is limited by the training122

dataset’s bias toward lower redshifts, which affects its performance at higher redshift values (See123

Fig. 2). Additionally, the generated images may exhibit increased variability (Fig. 5), particularly in124

underrepresented redshift ranges, potentially blending characteristics from neighboring redshifts.125

7 Conclusion126

In this work, we introduced a novel approach to generating galaxy images using Denoising Diffusion127

Probabilistic Models (DDPM), conditioned on continuous redshift values. Our empirical analysis128

demonstrates that conditioning the model solely on redshift enables it to implicitly learn key morpho-129

logical characteristics of galaxies without requiring explicit morphological information. This finding130

suggests that redshift, a measure of both age and distance, can serve as a robust predictor of galaxy131

structure.132

Our results show that the DDPM captures essential physical attributes, such as semi-major axis,133

isophotal area, ellipticity, and Sersic index, with high fidelity to the true data distribution. The model’s134

ability to generalize these attributes, conditioned solely on redshift and image data, supports the135

hypothesis that redshift is intricately linked to galaxy morphology. This finding not only enhances136

our understanding of galaxy formation but also establishes DDPMs as a valuable tool for simulating137

realistic galaxy populations across cosmic timescales.138
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NeurIPS Paper Checklist181

The checklist is designed to encourage best practices for responsible machine learning research,182

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove183

the checklist: The papers not including the checklist will be desk rejected. The checklist should184

follow the references and follow the (optional) supplemental material. The checklist does NOT count185

towards the page limit.186

Please read the checklist guidelines carefully for information on how to answer these questions. For187

each question in the checklist:188

• You should answer [Yes] , [No] , or [NA] .189

• [NA] means either that the question is Not Applicable for that particular paper or the190

relevant information is Not Available.191

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).192

The checklist answers are an integral part of your paper submission. They are visible to the193

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it194

(after eventual revisions) with the final version of your paper, and its final version will be published195

with the paper.196

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.197

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a198

proper justification is given (e.g., "error bars are not reported because it would be too computationally199

expensive" or "we were unable to find the license for the dataset we used"). In general, answering200

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we201

acknowledge that the true answer is often more nuanced, so please just use your best judgment and202

write a justification to elaborate. All supporting evidence can appear either in the main paper or the203

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification204

please point to the section(s) where related material for the question can be found.205

1. Claims206

Question: Do the main claims made in the abstract and introduction accurately reflect the207

paper’s contributions and scope?208

Answer: [Yes]209

Justification: Claims are made in the abstract and in Sec. 1 are discussed through out the210

paper. See Sec. 4, Sec. 5, Sec. 6.211

Guidelines:212

• The answer NA means that the abstract and introduction do not include the claims213

made in the paper.214

• The abstract and/or introduction should clearly state the claims made, including the215

contributions made in the paper and important assumptions and limitations. A No or216

NA answer to this question will not be perceived well by the reviewers.217

• The claims made should match theoretical and experimental results, and reflect how218

much the results can be expected to generalize to other settings.219

• It is fine to include aspirational goals as motivation as long as it is clear that these goals220

are not attained by the paper.221

2. Limitations222

Question: Does the paper discuss the limitations of the work performed by the authors?223

Answer: [Yes]224

Justification: See Sec. 6.3.225

Guidelines:226

• The answer NA means that the paper has no limitation while the answer No means that227

the paper has limitations, but those are not discussed in the paper.228

• The authors are encouraged to create a separate "Limitations" section in their paper.229
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• The paper should point out any strong assumptions and how robust the results are to230

violations of these assumptions (e.g., independence assumptions, noiseless settings,231

model well-specification, asymptotic approximations only holding locally). The authors232

should reflect on how these assumptions might be violated in practice and what the233

implications would be.234

• The authors should reflect on the scope of the claims made, e.g., if the approach was235

only tested on a few datasets or with a few runs. In general, empirical results often236

depend on implicit assumptions, which should be articulated.237

• The authors should reflect on the factors that influence the performance of the approach.238

For example, a facial recognition algorithm may perform poorly when image resolution239

is low or images are taken in low lighting. Or a speech-to-text system might not be240

used reliably to provide closed captions for online lectures because it fails to handle241

technical jargon.242

• The authors should discuss the computational efficiency of the proposed algorithms243

and how they scale with dataset size.244

• If applicable, the authors should discuss possible limitations of their approach to245

address problems of privacy and fairness.246

• While the authors might fear that complete honesty about limitations might be used by247

reviewers as grounds for rejection, a worse outcome might be that reviewers discover248

limitations that aren’t acknowledged in the paper. The authors should use their best249

judgment and recognize that individual actions in favor of transparency play an impor-250

tant role in developing norms that preserve the integrity of the community. Reviewers251

will be specifically instructed to not penalize honesty concerning limitations.252

3. Theory Assumptions and Proofs253

Question: For each theoretical result, does the paper provide the full set of assumptions and254

a complete (and correct) proof?255

Answer: [NA]256

Justification: The paper is an empirical analysis without theoretical results.257

Guidelines:258

• The answer NA means that the paper does not include theoretical results.259

• All the theorems, formulas, and proofs in the paper should be numbered and cross-260

referenced.261

• All assumptions should be clearly stated or referenced in the statement of any theorems.262

• The proofs can either appear in the main paper or the supplemental material, but if263

they appear in the supplemental material, the authors are encouraged to provide a short264

proof sketch to provide intuition.265

• Inversely, any informal proof provided in the core of the paper should be complemented266

by formal proofs provided in appendix or supplemental material.267

• Theorems and Lemmas that the proof relies upon should be properly referenced.268

4. Experimental Result Reproducibility269

Question: Does the paper fully disclose all the information needed to reproduce the main ex-270

perimental results of the paper to the extent that it affects the main claims and/or conclusions271

of the paper (regardless of whether the code and data are provided or not)?272

Answer: [Yes]273

Justification: Methods, data and experimental setup are provided in detail in Sec. 5, Sec. 4274

and Sec. 6 respectively.275

Guidelines:276

• The answer NA means that the paper does not include experiments.277

• If the paper includes experiments, a No answer to this question will not be perceived278

well by the reviewers: Making the paper reproducible is important, regardless of279

whether the code and data are provided or not.280

• If the contribution is a dataset and/or model, the authors should describe the steps taken281

to make their results reproducible or verifiable.282
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• Depending on the contribution, reproducibility can be accomplished in various ways.283

For example, if the contribution is a novel architecture, describing the architecture fully284

might suffice, or if the contribution is a specific model and empirical evaluation, it may285

be necessary to either make it possible for others to replicate the model with the same286

dataset, or provide access to the model. In general. releasing code and data is often287

one good way to accomplish this, but reproducibility can also be provided via detailed288

instructions for how to replicate the results, access to a hosted model (e.g., in the case289

of a large language model), releasing of a model checkpoint, or other means that are290

appropriate to the research performed.291

• While NeurIPS does not require releasing code, the conference does require all submis-292

sions to provide some reasonable avenue for reproducibility, which may depend on the293

nature of the contribution. For example294

(a) If the contribution is primarily a new algorithm, the paper should make it clear how295

to reproduce that algorithm.296

(b) If the contribution is primarily a new model architecture, the paper should describe297

the architecture clearly and fully.298

(c) If the contribution is a new model (e.g., a large language model), then there should299

either be a way to access this model for reproducing the results or a way to reproduce300

the model (e.g., with an open-source dataset or instructions for how to construct301

the dataset).302

(d) We recognize that reproducibility may be tricky in some cases, in which case303

authors are welcome to describe the particular way they provide for reproducibility.304

In the case of closed-source models, it may be that access to the model is limited in305

some way (e.g., to registered users), but it should be possible for other researchers306

to have some path to reproducing or verifying the results.307

5. Open access to data and code308

Question: Does the paper provide open access to the data and code, with sufficient instruc-309

tions to faithfully reproduce the main experimental results, as described in supplemental310

material?311

Answer: [Yes]312

Justification: Details of the model architecture and training are fully described in Sec. 5 and313

the model weights and training scripts are planned to be open sourced via github. Data uses314

an opensource dataset as described in 4 and is readily available at: Zendo (GalaxiesML:315

https://zenodo.org/records/11117528 CC-BY 4.0)316

Guidelines:317

• The answer NA means that paper does not include experiments requiring code.318

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/319

public/guides/CodeSubmissionPolicy) for more details.320

• While we encourage the release of code and data, we understand that this might not be321

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not322

including code, unless this is central to the contribution (e.g., for a new open-source323

benchmark).324

• The instructions should contain the exact command and environment needed to run to325

reproduce the results. See the NeurIPS code and data submission guidelines (https:326

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.327

• The authors should provide instructions on data access and preparation, including how328

to access the raw data, preprocessed data, intermediate data, and generated data, etc.329

• The authors should provide scripts to reproduce all experimental results for the new330

proposed method and baselines. If only a subset of experiments are reproducible, they331

should state which ones are omitted from the script and why.332

• At submission time, to preserve anonymity, the authors should release anonymized333

versions (if applicable).334

• Providing as much information as possible in supplemental material (appended to the335

paper) is recommended, but including URLs to data and code is permitted.336

6. Experimental Setting/Details337
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-338

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the339

results?340

Answer: [Yes]341

Justification: See Sec. 5 and Sec. 6.342

Guidelines:343

• The answer NA means that the paper does not include experiments.344

• The experimental setting should be presented in the core of the paper to a level of detail345

that is necessary to appreciate the results and make sense of them.346

• The full details can be provided either with the code, in appendix, or as supplemental347

material.348

7. Experiment Statistical Significance349

Question: Does the paper report error bars suitably and correctly defined or other appropriate350

information about the statistical significance of the experiments?351

Answer: [Yes]352

Justification: Reported in Fig. 4 and discussed further in Sec. 6.353

Guidelines:354

• The answer NA means that the paper does not include experiments.355

• The authors should answer "Yes" if the results are accompanied by error bars, confi-356

dence intervals, or statistical significance tests, at least for the experiments that support357

the main claims of the paper.358

• The factors of variability that the error bars are capturing should be clearly stated (for359

example, train/test split, initialization, random drawing of some parameter, or overall360

run with given experimental conditions).361

• The method for calculating the error bars should be explained (closed form formula,362

call to a library function, bootstrap, etc.)363

• The assumptions made should be given (e.g., Normally distributed errors).364

• It should be clear whether the error bar is the standard deviation or the standard error365

of the mean.366

• It is OK to report 1-sigma error bars, but one should state it. The authors should367

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis368

of Normality of errors is not verified.369

• For asymmetric distributions, the authors should be careful not to show in tables or370

figures symmetric error bars that would yield results that are out of range (e.g. negative371

error rates).372

• If error bars are reported in tables or plots, The authors should explain in the text how373

they were calculated and reference the corresponding figures or tables in the text.374

8. Experiments Compute Resources375

Question: For each experiment, does the paper provide sufficient information on the com-376

puter resources (type of compute workers, memory, time of execution) needed to reproduce377

the experiments?378

Answer: [Yes]379

Justification: Discussed in Sec. 5, the model is trained on a single NVIDIA A6000 GPU.380

Guidelines:381

• The answer NA means that the paper does not include experiments.382

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,383

or cloud provider, including relevant memory and storage.384

• The paper should provide the amount of compute required for each of the individual385

experimental runs as well as estimate the total compute.386

• The paper should disclose whether the full research project required more compute387

than the experiments reported in the paper (e.g., preliminary or failed experiments that388

didn’t make it into the paper).389
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9. Code Of Ethics390

Question: Does the research conducted in the paper conform, in every respect, with the391

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?392

Answer: [Yes]393

Justification: None.394

Guidelines:395

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.396

• If the authors answer No, they should explain the special circumstances that require a397

deviation from the Code of Ethics.398

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-399

eration due to laws or regulations in their jurisdiction).400

10. Broader Impacts401

Question: Does the paper discuss both potential positive societal impacts and negative402

societal impacts of the work performed?403

Answer: [NA]404

Justification: [NA]405

Guidelines:406

• The answer NA means that there is no societal impact of the work performed.407

• If the authors answer NA or No, they should explain why their work has no societal408

impact or why the paper does not address societal impact.409

• Examples of negative societal impacts include potential malicious or unintended uses410

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations411

(e.g., deployment of technologies that could make decisions that unfairly impact specific412

groups), privacy considerations, and security considerations.413

• The conference expects that many papers will be foundational research and not tied414

to particular applications, let alone deployments. However, if there is a direct path to415

any negative applications, the authors should point it out. For example, it is legitimate416

to point out that an improvement in the quality of generative models could be used to417

generate deepfakes for disinformation. On the other hand, it is not needed to point out418

that a generic algorithm for optimizing neural networks could enable people to train419

models that generate Deepfakes faster.420

• The authors should consider possible harms that could arise when the technology is421

being used as intended and functioning correctly, harms that could arise when the422

technology is being used as intended but gives incorrect results, and harms following423

from (intentional or unintentional) misuse of the technology.424

• If there are negative societal impacts, the authors could also discuss possible mitigation425

strategies (e.g., gated release of models, providing defenses in addition to attacks,426

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from427

feedback over time, improving the efficiency and accessibility of ML).428

11. Safeguards429

Question: Does the paper describe safeguards that have been put in place for responsible430

release of data or models that have a high risk for misuse (e.g., pretrained language models,431

image generators, or scraped datasets)?432

Answer: [NA]433

Justification: [NA]434

Guidelines:435

• The answer NA means that the paper poses no such risks.436

• Released models that have a high risk for misuse or dual-use should be released with437

necessary safeguards to allow for controlled use of the model, for example by requiring438

that users adhere to usage guidelines or restrictions to access the model or implementing439

safety filters.440
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• Datasets that have been scraped from the Internet could pose safety risks. The authors441

should describe how they avoided releasing unsafe images.442

• We recognize that providing effective safeguards is challenging, and many papers do443

not require this, but we encourage authors to take this into account and make a best444

faith effort.445

12. Licenses for existing assets446

Question: Are the creators or original owners of assets (e.g., code, data, models), used in447

the paper, properly credited and are the license and terms of use explicitly mentioned and448

properly respected?449

Answer: [Yes]450

Justification: Liscenses for data are found at Zendo (GalaxiesML: https://zenodo.org/451

records/11117528 CC-BY 4.0) and is cited in Sec. 4.452

Guidelines:453

• The answer NA means that the paper does not use existing assets.454

• The authors should cite the original paper that produced the code package or dataset.455

• The authors should state which version of the asset is used and, if possible, include a456

URL.457

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.458

• For scraped data from a particular source (e.g., website), the copyright and terms of459

service of that source should be provided.460

• If assets are released, the license, copyright information, and terms of use in the461

package should be provided. For popular datasets, paperswithcode.com/datasets462

has curated licenses for some datasets. Their licensing guide can help determine the463

license of a dataset.464

• For existing datasets that are re-packaged, both the original license and the license of465

the derived asset (if it has changed) should be provided.466

• If this information is not available online, the authors are encouraged to reach out to467

the asset’s creators.468

13. New Assets469

Question: Are new assets introduced in the paper well documented and is the documentation470

provided alongside the assets?471

Answer: [NA]472

Justification: [NA]473

Guidelines:474

• The answer NA means that the paper does not release new assets.475

• Researchers should communicate the details of the dataset/code/model as part of their476

submissions via structured templates. This includes details about training, license,477

limitations, etc.478

• The paper should discuss whether and how consent was obtained from people whose479

asset is used.480

• At submission time, remember to anonymize your assets (if applicable). You can either481

create an anonymized URL or include an anonymized zip file.482

14. Crowdsourcing and Research with Human Subjects483

Question: For crowdsourcing experiments and research with human subjects, does the paper484

include the full text of instructions given to participants and screenshots, if applicable, as485

well as details about compensation (if any)?486

Answer: [NA]487

Justification: [NA]488

Guidelines:489

• The answer NA means that the paper does not involve crowdsourcing nor research with490

human subjects.491
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• Including this information in the supplemental material is fine, but if the main contribu-492

tion of the paper involves human subjects, then as much detail as possible should be493

included in the main paper.494

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,495

or other labor should be paid at least the minimum wage in the country of the data496

collector.497

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human498

Subjects499

Question: Does the paper describe potential risks incurred by study participants, whether500

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)501

approvals (or an equivalent approval/review based on the requirements of your country or502

institution) were obtained?503

Answer: [NA]504

Justification: [NA]505

Guidelines:506

• The answer NA means that the paper does not involve crowdsourcing nor research with507

human subjects.508

• Depending on the country in which research is conducted, IRB approval (or equivalent)509

may be required for any human subjects research. If you obtained IRB approval, you510

should clearly state this in the paper.511

• We recognize that the procedures for this may vary significantly between institutions512

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the513

guidelines for their institution.514

• For initial submissions, do not include any information that would break anonymity (if515

applicable), such as the institution conducting the review.516
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