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Abstract

In astrophysics, understanding the evolution of galaxies in primarily through imag-
ing data is fundamental to comprehending the formation of the Universe. This
paper introduces a novel approach to conditioning Denoising Diffusion Probabilis-
tic Models (DDPM) on redshifts for generating galaxy images. We explore whether
this advanced generative model can accurately capture the physical characteristics
of galaxies based solely on their images and redshift measurements. Our findings
demonstrate that this model not only produces visually realistic galaxy images but
also encodes the underlying changes in physical properties with redshift that are
the result of galaxy evolution. This approach marks a significant advancement in
using generative models to enhance our scientific insight into cosmic phenomena.

1 Introduction

Understanding galaxy formation and evolution is central to astrophysics, yet observational limitations
restrict our ability to capture galaxies across cosmic timescales. Redshift-conditioned generative
models help by simulating galaxies in underexplored regions, thus offering new insights into galaxy
evolution and cosmic structure. Recently, Denoising Diffusion Probabilistic Models (DDPM) models
[1] have emerged as a promising generative model class, achieving state-of-the-art results in generating
high-fidelity images [1, 2, 3].

DDPMs operate by gradually adding noise to data through a forward diffusion process and then
learning to reverse this process to generate new samples. Their ability to model complex distributions
makes them suitable candidates for generating galaxy images conditioned on specific properties, such
as redshift, which corresponds approximately to the distance of a galaxy.

2 Related Work

Recent efforts [4, 5] have employed diffusion models in astronomy by discretizing continuous redshift
values to adapt to the discrete-time framework of these models. However, this discretization process
inherently leads to information loss, which in turn limits the model’s ability to accurately learn the
continuous distribution p(Xz | z) thereby impacting the precision of the generated galaxy images
conditioned on redshift. Similar approaches, such as those by Xue et al. [6], have explored the use of
DDPMs for Point Spread Function (PSF) deconvolution, but their method, distinct from ours, does
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not address the limitations of discrete stepwise conditioning. Lanusse et al. [7] and Margalef et al. [8]
utilized Generative Adversarial Networks (GANs) with redshift as a conditional input to generate
synthetic galaxy images, simulating the visual characteristics of galaxies across different distances
and observational scenarios. However these GANs struggle with mode collapse and benchmarks
were compared with perceptual scores as opposed to true galaxy morphology.

3 Contributions

To overcome these limitations, we propose a novel adaptation of DDPMs, specifically tailored for
generating galaxy images across a continuous range of redshifts without the need for discretization or
the introduction of a secondary redshift encoding model. Our main contributions are as follows:

• We develop a new approach that directly conditions the DDPM on continuous redshift
values, significantly enhancing the model’s accuracy and fidelity.

• Our findings demonstrate that our model can implicitly learn the morphological character-
istics of galaxies without explicit input regarding these attributes, thereby suggesting that
redshift alone is predictive of galaxy morphology.

4 Data

For our analysis, we employ a subset of the Hyper Suprime-Cam Galaxy Dataset curated by Do
et al. [9], which is publicly accessible at Zenodo (GalaxiesML: https://zenodo.org/records/
11117528 CC-BY 4.0). This dataset is based on the data released by the Hyper Suprime-Cam survey,
as detailed by Aihara et al. [10]. It comprises 286,401 galaxies, spanning redshifts from 0 to 4.
Each galaxy is represented by images taken in five visible wavelength bands—(g, r, i, z, y) filters.
We use the 64 × 64 pixel images from GalaxiesML. The dataset includes accurate spectroscopic
measurements of each galaxy’s true redshift (or distance from Earth). Due to the selection process,
the dataset exhibits a bias toward lower redshifts, with approximately 92.8% of the galaxies having
redshifts less than 1.5. We adhere to the training and testing split proposed by Li et al. [4], resulting
in a training set comprising 204,513 images and a testing set containing 40,914 images.

5 Methods

5.1 Continuous Conditioning of DDPMs

Utilizing DDPMs [1], we introduce a novel approach to learn the conditional distribution p(Xz | z)
by integrating redshift values into the U-Net architecture’s time steps [4, 5]. To prevent model
overfitting and ensure learning is concentrated within a Gaussian neighborhood around specific
redshifts z, Gaussian noise N (0, σ) is added to the redshifts during training, enhancing the
model’s ability to interpolate between nearby redshifts. Our Conditional Denoising U-Net starts
with a noisy initial galaxy image Xz

T and, through iterative denoising informed by both time
step and the adjusted redshifts, aims to produce a clean galaxy image Xz

0 . To additionally
stabilize the training, we implement an Exponential Moving Average (EMA) [11] and adhere
to a standard variance schedule [1, 12] to balance noise addition and preserve data structure.

Input Galaxy Xz
T

Conditional Denoising UNet

Output Image Xz
0

Redshift z +N (0, σ)

Positional Encoding tEMA Update

Diffusion Process

Figure 1: Model Architecture

The model’s diffusion process starts with 64 × 64 pixel
galaxies images with 5 channels, which are passed to a
noising schedule across 1000 time steps, linearly inter-
polating noise levels from a Beta Start of 1 × 10−4 to a
Beta End of 0.02. Training utilizes Huber Loss for its
robustness to outliers, gradient clipping with a max norm
of 1.0, and an AdamW optimizer [13] set to a learning rate
of 2× 10−5. Redshifts are perturbed with Gaussian noise
(std dev 0.01) to prevent overfitting and improve gener-
alization. Our UNet model, equipped with self-attention
layers, varies channels by resolution stage and includes 4
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attention heads with layer normalization and GELU acti-
vation [14], applied before and after attention. Temporal
and conditional redshift information is encoded using sinu-
soidal positional encoding of the time step t, transformed
into a 256-dimensional vector. This vector is further modified by adding Gaussian noise to the redshift
value z +N (0, 0.01), prior to being fed into the U-Net (refer to 5.1). The model was trained on a
single NVIDIA A6000 GPU. Exact architecture details and implementations are to be released in a
publicly available open sourced github.

5.2 Evaluation

Our evaluation focuses on the measured physical attributes of galaxies to gauge the physical con-
sistency of our generated images, which involve five color filters (g, r, i, z, y). While perceptual
quality metrics like Fréchet Inception Distance (FID) [15] and Inception Score (IS) [16] indicate
general similarity to true images, they fail to assess critical morphological properties of galaxies
and their evolution over time. Our evaluation involves generating synthetic images conditioned on
redshifts from the test dataset and comparing to physical properties that astronomers typically use to
characterize galaxies [e.g. 17], such as the shape (ellipticity, semi-major axis), size (isophotal area),
and brightness distribution (Sersic index). Furthermore, using the CNNRedshift predictor established
by Li et al. [4], we assess the redshift accuracy against the ground truth, utilizing the redshift loss
from [18]. This redshift predictor was trained on real galaxy images using spectroscopic ground truth
and produces good predictions on real data (Fig. 2). These comparisons help verify the physical
plausibility of the diffusion model’s output.

6 Results

6.1 Redshift Prediction

We find that the generated images have redshift predictions that are in good agreement with the
redshift that they were generated with as evaluated by the CNNRedshift predictor (Fig. 2). The
DDPM produces images with redshift predictions that have slightly larger scatter than with real
images, but follows the 1:1 line between conditioned redshift and predicted redshift well up to a
redshift about 2. Redshifts beyond 2 are challenging because these redshifts represent less than 2%
of the training dataset.

6.2 Modeling the Physical Characteristics of Galaxies

We calculate standard metrics for both the test data and the DDPM-generated images, which are
conditioned on the test data’s redshifts. Our findings confirm that the DDPM successfully learns the
physical characteristics of galaxies-such as the ellipticity, semi-major axis, Sersic index, and isophotal
area even though these attributes were never explicitly provided to the model. When comparing the
frequencies of each metric between the DDPM and the true distribution, we see in Fig. 3 that the
overall shape of the distributions is very close.

Moreso, Fig. 4 illustrates that for each redshift bin, the mean values (represented by red dots) of
each metric for DDPM-generated galaxies closely match the means of the true test distribution (blue
dots). The ranges of these metrics generally fall within the true distribution’s ranges. This suggests
that the DDPM model is able to associate redshifts with morphological characteristics of galaxies
observed at that redshift. For example, the galaxies tend to be more compact at higher redshifts but
the distribution of ellipticity does not change much with redshift, consisent with the testing dataset.

Recall that Fig. 2 indicates a greater variance in detected redshifts. We anticipate the model to
produce a broader range of generated images, potentially blending characteristics from neighboring
redshift values. This effect is evident in Fig. 5, where the model generates images that display
increased diversity and variability.
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Figure 2: From left to right, the figure displays: 1) a scatter plot comparing predicted redshifts to
true redshifts for ground truth images, 2) a similar scatter plot for DDPM-generated images, 3) a plot
of true redshift versus mean redshift loss, highlighting the performance accuracy across the redshift
range.

Figure 3: (TOP) From left to right, the figure displays histograms comparing the frequency distribution
of DDPM-generated and real galaxies in terms of 1) ellipticity, 2) semi-major axis, 3) Sersic index,
and 4 isophotal area). (BOTTOM) Log-Scale of (TOP)
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Figure 4: From left to right, the figure displays 95% CIs comparing DDPM-generated and real
galaxies across redshift bins: 1) ellipticity, 2) semi-major axis, 3) Sersic index, and 4 isophotal area).

Figure 5: (Top) Real galaxies and corresponding redshifts and (Bottom) DDPM generated galaxies.
Both rows correspond to respective redshifts.

7 Conclusion

In this work, we introduced a novel approach to generating galaxy images using Denoising Diffusion
Probabilistic Model (DDPM), conditioned on continuous redshift values. Our results show that
the DDPM effectively captures essential physical attributes of galaxies, such as semi-major axis,
isophotal area, ellipticity, and Sersic index, with high fidelity to the true data distribution. This
suggests that redshift, a measure of both age and distance, serves as a strong predictor of galaxy
structure, even without direct morphological inputs.

Future work should focus on extending this approach toward models that can learn the physical
evolution of galaxies more directly. Reproducing the morphological characteristics [e.g., 17] is the
first step to embed the physics of galaxy evolution into an neural network. To demonstrate more
direct connection to physics, one should also apply more stringent tests. For example, it’s uncertain if
models produce galaxies that have the same star formation rate density evolution [e.g., 19] or physical
changes through galaxy mergers [20].

Moreover, considering DDPM’s ability to interpolate between modes of the learned probability
distribution, we propose raises the question if DDPM’s can be utilized for dynamic visualizations
of galaxy evolution as a function of redshift. Such a framework could serve as a powerful tool for
studying galaxy formation and evolution across cosmic timescales.
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